Mothemoties

Part 5 (Square root)

Introduction

Recall that a square of a number is the result of multiplying this number by itself.

Example:
$$3^2 = 3 \times 3 = 9$$

As a result, square root of a number *a* is a value that is multiplied by itself to obtain the original number *a*.

It is denoted \sqrt{a} that is read radical of a

Introduction

Determine the square root of each number in each case.

	\sqrt{a}	The number a
Since $2^2 = 4$	$\sqrt{4}=2$	4
Since $3^2 = 9$	$\sqrt{9} = 3$	9
Since $4^2 = 16$	$\sqrt{16} = 4$	16
Since $9^2 = 9$	$\sqrt{81} = 9$	81
Since $12^2 = 144$	$\sqrt{144}=12$	144
Since $50^2 = 2500$	$\sqrt{2500}=50$	2500

M@thEm@ti¢§

 \clubsuit If a number a is negative, then \sqrt{a} doesn't exist.

Example:

 $\sqrt{-4}$ doesn't exist since there is no number that is multiplied by itself gives -4: $2 \times 2 = 4 \neq -4$ and $(-2) \times (-2) = 4 \neq -4$

• \sqrt{a} is a positive number

$$\sqrt{3^2} = 3$$
; $\sqrt{(-16)^2} = -(-16) = 16$

Fundamental rules

$$a > 0 \& b > 0$$

Example:

$$\sqrt{2} \times \sqrt{3} = \sqrt{2 \times 3} = \sqrt{6}$$

$$\sqrt{8} \times \sqrt{2} = \sqrt{8 \times 2} = \sqrt{16} = 4$$

$$\sqrt{\frac{4}{25}} = \frac{\sqrt{4}}{\sqrt{25}} = \frac{2}{5}$$
 ; $\frac{\sqrt{3}}{\sqrt{27}} = \sqrt{\frac{3}{27}} = \sqrt{\frac{1}{9}} = \frac{1}{3}$

M@thEm@ti¢§

$$\checkmark \sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$$

$$\checkmark \sqrt{a} - \sqrt{b} \neq \sqrt{a - b}$$

$$\sqrt{16} + \sqrt{9} = 4 + 3 = 7$$
 but $\sqrt{16 + 9} = \sqrt{25} = 5 \neq 7$

$$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$$
 but $\sqrt{25 - 9} = \sqrt{16} = 4 \neq 2$

Fundamental rules

$$a > 0$$
; $b > 0$; $c > 0 & d > 0$

$$•$$
 $\sqrt{a} \times \sqrt{a} = (\sqrt{a})^2 = a$

Example:

$$(\sqrt{2})^2 = 2$$
; $(\sqrt{5})^2 = 5$

$$2\sqrt{3} \times 5\sqrt{2} = 2 \times 5\sqrt{3} \times 2 = 10\sqrt{6}$$

 $-3\sqrt{3} \times \sqrt{3} = -3 \times 3 = -9$

Fundamental rules

$$a > 0$$
; $b > 0$; $c > 0 & d > 0$

$$2\sqrt{3} + 3\sqrt{3} = (2+3)\sqrt{3} = 5\sqrt{3}$$
$$-5\sqrt{2} + 3\sqrt{2} + \sqrt{2} - 5\sqrt{2} = (-5+3+1-5)\sqrt{2}$$

Example 1:

Simplify
$$A = \sqrt{2^4}$$

To simplify, divide the exponent by 2 Then $A = 2^2$

Simplify
$$A = \sqrt{2^6}$$

$$A = 2^{3}$$

Simplify
$$A = \sqrt{2^8 \times 3^{16} \times 25}$$

$$A = 2^4 \times 3^8 \times 5$$

Simplify
$$A = \sqrt{(-7)^2 \times 3^4}$$

$$A = 7 \times 3^2$$

As a result if the exponent is even, just divide it by 2 to get the answer.

But pay attention, the answer will be positive.

Example:
$$\sqrt{(-7)^2} = 7$$

Example 2:

Simplify
$$A = \sqrt{2^5}$$

To simplify, decompose the exponent into two numbers 1 and the even

number just before the exponent: 5 = 4+1

Then
$$A = \sqrt{2^4 \times 2} = 2^2 \sqrt{2}$$

Simplify
$$A = \sqrt{2^{101}}$$

$$A = \sqrt{2^{100} \times 2} = 2^{50} \sqrt{2}$$

Simplify
$$A = \sqrt{2^8 \times 3^{25} \times 49}$$

$$A = 2^4 \times 7 \times \sqrt{3^{24} \times 3} = 2^4 \times 7 \times 3^{12} \sqrt{3}$$

As a result if the exponent is odd, decompose it into "1 + even number".

Example: 3=2+1;

Example 3:

Simplify
$$A = \sqrt{72}$$

To simplify, decompose using the prime number decomposition.

$$A = \sqrt{2^2 \times 2 \times 3^2} = 2 \times 3\sqrt{2} = 6\sqrt{2}$$

Example 3:

Simplify
$$A = \sqrt{84}$$

To simplify, decompose using the prime number decomposition.

In the last examples, we've learned to simplify expressions containing radicals using the best method: "prime factorization" But you can use simply the calculator to simplify \sqrt{a} .

Simplify
$$A = \sqrt{32} + \sqrt{8}$$

Using calculator: $A = 4\sqrt{2} + 2\sqrt{2} = (4 + 2)\sqrt{2} = 6\sqrt{2}$.

$\sqrt{32}$			
$= 4\sqrt{2}$			
$\sqrt{8}$			
$\sqrt{8}$ $= 2\sqrt{2}$			
Input			

123 f(x) ABC								
i∷i²	:::"	I∷I ⁻¹	√:::	7	8	9	×	÷
sin	cos	tan	π	4	5	6	+	-
In	log ₁₀	<u>:::</u>	:::::::::	1	2	3		×
ans	,	()	0		<	>	←

Application

Write A = $2\sqrt{3}$ + $6\sqrt{12}$ – $2\sqrt{27}$ + $3\sqrt{48}$ in form of $a\sqrt{b}$ where a is an integer and b is a natural number.

$$A = 2\sqrt{3} + 6\sqrt{12} - 2\sqrt{27} + 3\sqrt{48}$$

$$= 2\sqrt{3} + 6 \times 2\sqrt{3} - 2 \times 3\sqrt{3} + 3 \times 4\sqrt{3}$$

$$= 2\sqrt{3} + 12\sqrt{3} - 6\sqrt{3} + 12\sqrt{3}$$

$$= (2 + 12 - 6 + 12)\sqrt{3}$$

$$= 20\sqrt{3}$$

M@thEm@ti¢§

Application

Expand and reduce the following expression.

$$A = (2\sqrt{3} + 2)(2\sqrt{3} - 2)$$

$$A = (2\sqrt{3} + 2)(2\sqrt{3} - 2) \text{ using remarkable identity } (a - b)(a + b) = a^2 - b^2$$

$$= (2\sqrt{3})^2 - 2^2$$

$$= 12 - 4$$

$$= 8$$